Cyclic nucleotide phosphodiesterase-mediated integration of cGMP and cAMP signaling in cells of the cardiovascular system.
نویسنده
چکیده
Numerous pharmacological and physiological agents acting via either cAMP- or cGMP-mediated impact the activities of cells of the cardiovascular system. While most define cAMP and cGMP signaling systems as separate and independent, recent advances in our understanding of cyclic nucleotide signaling, and more specifically, of the roles which cyclic nucleotide phosphodiesterases (PDEs) play in these events, have altered this view. In this short chapter, I will review the data identifying expression of several PDEs in cells of the cardiovascular system. In addition, I will review the data that identify PDEs as enzymes capable of allowing integration between cAMP and cGMP signaling in cells, and propose that cAMP and cGMP signaling systems can represent parallel and interdependent signaling systems. Moreover, I will propose that cGMP-mediated effects on the activities of variants of the Phosphodiesterase 2 (PDE2), PDE3 and PDE5 families may act to coordinate linkage between cAMP and cGMP signaling in these cells.
منابع مشابه
Expression of Recombinant Phosphodiesterase 3A and 3B Using Baculovirus Expression System
Background: Phosphodiesterase 3A (PDE3A) and phosphodiesterase 3B (PDE3B) play a critical role in the regulation of intracellular level of adenosine 3´,5´-cyclic monophosphate (cyclic AMP, cAMP) and guanosine 3´,5´-cyclic monophosphate (cyclic GMP, cGMP). Subsequently PDE3 inhibitors have shown to relax vascular and inhibit platelet aggregation in cardiovascular disease. Objectives: In th...
متن کاملCyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system.
Cyclic AMP (cAMP) and cGMP regulate a myriad of cellular functions, such as metabolism, contractility, motility, and transcription in virtually all cell types, including those of the cardiovascular system. Considerable effort over the last 20 years has allowed identification of the cellular components involved in the synthesis of cyclic nucleotides, as well as effectors of cyclic nucleotide-med...
متن کاملCYCLIC NUCLEOTIDES CONTROL DIFFERENTIATION OF HUMAN MONOCYTES INTO EITHER HIGHLY ACCESSORY CELLS OR MACROPHAGES
Human peripheral blood monocytes have been found to undergo a transitory state of high accessory activity before they fully become macrophages. Time kinetics were done to follow this accessory potential. Studying the regulation of accessory activity, we have found that monocyte derived accessory cells (m-AC) pass through two phases of development, both of which are adversely controlled by ...
متن کاملDual expression and differential regulation of phosphodiesterase 3A and phosphodiesterase 3B in human vascular smooth muscle: implications for phosphodiesterase 3 inhibition in human cardiovascular tissues.
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes whose physiological role is the attenuation of the signaling mediated by the ubiquitous second messengers cAMP and cGMP. Given the myriad of physiological processes regulated by cAMP and cGMP, PDEs have long been studied as potential therapeutic targets. Although phosphodiesterase 3 (PDE3) activity is abundant in human car...
متن کاملSynergistic inhibition of vascular smooth muscle cell migration by phosphodiesterase 3 and phosphodiesterase 4 inhibitors.
Cyclic nucleotide phosphodiesterases (PDEs) hydrolyze cAMP or cGMP and terminate their signaling. Two important families of PDEs that regulate cAMP signaling in cardiovascular tissues are the cGMP-inhibited PDEs (PDE3) and the cAMP-specific PDEs (PDE4). In this study, we have used a combination of an in vitro motility assay and a sensitive method for the measurement of cAMP in order to determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in bioscience : a journal and virtual library
دوره 10 شماره
صفحات -
تاریخ انتشار 2005